Extensions 1→N→G→Q→1 with N=C3 and Q=C32xC4oD4

Direct product G=NxQ with N=C3 and Q=C32xC4oD4
dρLabelID
C4oD4xC33216C4oD4xC3^3432,733

Semidirect products G=N:Q with N=C3 and Q=C32xC4oD4
extensionφ:Q→Aut NdρLabelID
C3:1(C32xC4oD4) = C32xC4oD12φ: C32xC4oD4/C6xC12C2 ⊆ Aut C372C3:1(C3^2xC4oD4)432,703
C3:2(C32xC4oD4) = C32xD4:2S3φ: C32xC4oD4/D4xC32C2 ⊆ Aut C372C3:2(C3^2xC4oD4)432,705
C3:3(C32xC4oD4) = C32xQ8:3S3φ: C32xC4oD4/Q8xC32C2 ⊆ Aut C3144C3:3(C3^2xC4oD4)432,707

Non-split extensions G=N.Q with N=C3 and Q=C32xC4oD4
extensionφ:Q→Aut NdρLabelID
C3.1(C32xC4oD4) = C4oD4xC3xC9central extension (φ=1)216C3.1(C3^2xC4oD4)432,409
C3.2(C32xC4oD4) = C4oD4xHe3central stem extension (φ=1)726C3.2(C3^2xC4oD4)432,410
C3.3(C32xC4oD4) = C4oD4x3- 1+2central stem extension (φ=1)726C3.3(C3^2xC4oD4)432,411

׿
x
:
Z
F
o
wr
Q
<